Abschlussbericht LVDS

Marco Wilzbach Sascha Reinhardt

27. Januar 2000

Inhaltsverzeichnis

1	Ein	leitung 1	L					
	1.1	Signalqualitätsmessung						
	1.2	Fragestellung des Versuchs	2					
2	Sig	nale der Orcakarte 5	5					
	2.1	Eigenschaften und Fähigkeiten	5					
		$2.1.1$ Zeit \ldots	5					
		2.1.2 Spannung	3					
		2.1.3 Fähigkeiten	3					
		2.1.4 Tabellen und Abbildungen	3					
	2.2	Anpassung an LVDS	2					
		2.2.1 Der Adapter	2					
		2.2.2 Veränderungen durch den Adapter	3					
		2.2.3 Tabellen und Abbildungen	3					
3	Ver	suchsaufbau und Messvorschrift 18	3					
Ŭ	3.1	Geräte und Materialien	Ś					
	3.2	Aufbau und Messvorschrift	ý					
	0.2	321 Aufbau 10	ý					
		3.2.2 Messyorschrift 10	ý					
		3.2.3 Abbildungen)					
4	Δ 115	swertung 25	2					
т	4 1	litter bei verschiedenen Kabellängen 25	, 2					
	1.1	4.1.1 Bestimming von t	, 3					
		4.1.2 Ergebnisse 25	, 2					
	$4\ 2$	litter hei Potentialdifferenz	, 1					
	1.2	4.2.1 Negative Potential differenz 24	1					
		4.2.2 Positive Potential differenz	1					
		4.2.3 Potential differenzmessung mit $2m$ -Kabel 24	1					
	43	Tabellen und Abbildungen	ī					
	1.0	4.3.1 Tabellen 25	5					
		4.3.2 Abbildungen	Ś					

5	Ergebnisse	35
	5.1 Datenraten	35
	5.2 Umgebung \ldots	36
A	Anschluss der HandShake-Leitung	37
в	Zusammenfassung	38

Zusammenfassung

Der Inhalt dieses Dokuments ist der Abschlußbericht des Projektes LVDS. Das Projekt LVDS wurde am 23.08.1999 in Rahmen eines Praktikums in der Technischen Informatik begonnen. Die im Praktikum erstellten Dokumente sind die Grundlage für die Dokumente, die bei der anschliesenden Fertigstellung des Projektes LVDS im Rahmen einer HIWI- Stelle, gemacht wurden. Das Projekt wurde am 05.01.2000 beendet.

In diesem Bericht sind folgende Punkte enthalten:

- 1. Verbesserung der Daten- und CLK- Signale von der Orcakarte
- 2. Signalqualität der LVDS- Signale bei unterschiedlichen Kabellängen
- 3. Verhalten des Sender- Empfänger- Paares bei Potentialdifferenzen zwischen ihren Massen
- 4. In Betriebnahme der Handshakeleitung, d. h. Kontrolle der richtigen Verschaltung

Die Orcakarte wurde von Rolf Schneider programmiert. Mitglieder des Projekts:

- Rolf Schneider (betreuender Doktorand)
- Marco Wilzbach
- Sascha Reinhardt

Kapitel 1

Einleitung

1.1 Signalqualitätsmessung

Um die Qualitiät eines Signals zu beurteilen, wird der Jitter bestimmt. Der Jitter ist das Verhältnis zwischen zwei Zeiten des Signals. Damit man diese Zeiten bestimmen kann, muß man ein *Eye-Pattern* erzeugen. Das Eye-Pattern ist eine Überlagerung mehrerer Signalfolgen. Im Normalfall ist die Signalabfolge zufällig, dann wird das Eye-Pattern *Random-Eye-Pattern* (REP) genannt. Für eine genaue Beschreibung sei auf die Application Note [AN-808] der Firma National Semiconductors (NSC) verwiesen. In Abbildung 1.1 ist ein Eye-Pattern als Beispiel dargestellt.

In unserem Fall interessieren zwei Jitter, der eine wird als Worst-Case-Jitter bezeichnet der andere als Peak-to-Peak-Jitter (CS-Jitter). Der Worst-Case-Jitter (WC-Jitter) ist das Verhältnis der Zeit t_{wc} zu der Zeit des Einheitsintervalls t_{ui} . Die Zeit t_{wc} ist die Zeitspanne in der das Signal unter $\pm 100mV$ und über $\pm 100mV$ ist. t_{wc} ist also die Breite des Kreuzes zwischen zwei Eyes bei $\pm 100mV$ und $\pm 100mV$. In einem REP gibt es keine Fallunterscheidung bei den Zeitbestimmungen, da hier alle Eyes gleich sind. In diesem Versuch mußte ein periodisches Signal benutzt werden, dies sieht man auch in der Abbildung 1.1. Es wird daher eine Unterscheidung zwischen den beiden auftretenden Strukturen gemacht. Die eine Struktur hüllt 7 Eyes ein und wird als äußere Fall bezeichnet. Die Struktur dazwischen als mittlere Fall.

Der CS- Jitter ist das Verhältnis der Zeit t_{cs} zu der Zeit t_{ui} . Die Zeit t_{cs} wird hier als minimale Breite des Kreuzes definiert, wobei man sagen muß, daß i. a. t_{cs} als Breite des Kreuzes auf der 0V-Linie definiert ist. Auch in diesem Fall wird dieselbe Unterscheidung gemacht (vgl. Abbildung 1.3 und 1.2). Die Zeit t_{ui} ist die Breite eines Eyes (s. Abbildung 1.4).

Der Sinn bei der Bestimmung von t_{wc} und t_{cs} besteht darin, daß man damit eine Aussage über die Sicherheit der Datenübertragung machen kann. Das soll nicht heißen, daß damit die Messsung der Bit-Fehler-Rate (*Bit Error Rate*) überflüssig wäre. In diesem Versuch wird der Jitter auf 0, 20 = 20% festgelegt, wie es von NSC in ihrem Design Guide für LVDS festglegt wurde (s. [LVDS-MAIN]). Der WC-Jitter ist der allgemeinere Fall bei diesen Messungen, da dieser garantiert, daß das Signal einen eindeutigen Zustand hat. Beim CS-Jitter muß man ein sehr gutes Signal besitzen, damit man dieses als Kriterium verwenden darf für die Signalqualtität (vgl. [AN-808, S. 12]).

1.2 Fragestellung des Versuchs

In diesem Versuch soll der Jitter unter verschiedenen Umgebungen bestimmt werden. Als Erstes wird der Jitter eines LVDS-Signals bestimmt, nachdem das Signal verschiedene Strecken in einem Kabel zurückgelegt hat. Damit soll der Einfluß des Kabels auf das Signal bestimmt werden. Die Länge der Kabel sind 0, 5m, 2m, 6mund 10m sein. Diese Kabel sind, bis auf das 0, 5m- Kabel, von der Qualität her identisch. Das 0, 5m- Kabel ist im Gegensatz zu den anderen Kabeln beidseitig mit Plastik beschichtet. Zum Schluß wird als Vergleich eine Messung bei 15m gemacht mit einem Kabel anderer Qualität.

Als Zweites wird der Jitter des Signals bestimmt, wenn zwischen der Masse des Empfängers und der Masse des Senders eine Potentialdifferenz besteht. Mit dieser Versuchsanordnung soll der Arbeitsbereich im Sinne der Potentialdifferenz bestimmt werden.

Abbildung 1.1: Eye-Pattern

Abbildung 1.2: äußerer Fall des Eye-Patterns

Abbildung 1.3: mittlerer Fall des Eye-Patterns

Abbildung 1.4: Einheits
intervall t_{ui}

Kapitel 2

Signale der Orcakarte

Als Daten- und CLK- Generator wurde die im Institut entwickelte Orcakarte verwendet. Ihre Eigenschaften, Fähigkeiten und Anpassung an das LVDS Projekt sind Bestandteil dieses Kapitels.

2.1 Eigenschaften und Fähigkeiten

In diesem Abschnitt sollen zuerst die Eigenschaften der Orcakarte besprochen werden. Alle gemachten Messungen die in diesem Abschnitt besprochen werden, fanden statt, wenn alle Ausgänge synchron waren.

2.1.1 Zeit

Es wird jetzt behandelt wie sich verschiedene Zeiten mit der Frequenz verändern. Als erstes wird überprüft wie lange die logischen Pegel 1(> 2V) und 0(< 0, 8V) von der Karte erzeugt werden. Es wurden die Messungen mit und ohne Adapter gemacht. Die Bestimmung der Zeiten und ihre Bezeichungen sind in Abbildung 2.1^1 zu sehen.

Die Messwerte sind in Tabelle 2.1 zu finden. Diese sind Werte sind in Abbildung 2.4 und 2.3 dargestellt. Die obere und untere Begrenzung wird von NSC für den Baustein des Senders festgelegt. Sie lauten im einzelnen:

1. TCIH:

obere Begrenzung
$$= 0,65TCIP$$
 (2.1)

untere Begrenzung
$$= 0,35TCIP$$
 (2.2)

2. TCIL:

obere Begrenzung
$$= 0,65TCIP$$
 (2.3)

untere Begrenzung
$$= 0,35TCIP$$
 (2.4)

¹Aus [Datenblatt]

Probleme bei der Zeitmessung

Es gab bei dieser Konfiguration Probleme bei der eindeutig Zeitmessung, da das Signal an manchen Stellen starken Schwankungen unterworfen war. Beim CLK-Signal gab es kein stabiles Signal im Bereich des TCIL. In Abbildung 2.2 ist dieses dargestellt. Wie man dort sieht gibt es im Bereich der eigentlichen Null eine Schwingung nach oben, die die 0, 8V überschreitet und somit keinem Zustand zugeordnet werden kann, d. h. der Zustand Null wäre viel zu kurz und würde damit nicht mehr die oben genannten Bedingungen erfüllen.

Bei der Messung wurde dieser Peak nicht beachtet, da dieser wahrscheinlich durch Reflektionen an den nicht terminierten Enden entsteht. Bei der Messung mit dem Adapter ist dieser Peak nicht mehr vorhanden.

2.1.2 Spannung

Jetzt werden die Spannungen, d. h. Spannungen Spitze-Spitze an den Ausgängen bestimmt. Die Messwerte sind in Tabelle 2.2 zu finden. Es wurde der Ausgang der CLK (TxCLKIN) und einer Datenleitung gemessen, wobei willkürlich der Ausgang TxIN8 gewählt wurde. In Bild 2.2 ist ein Screenshot bei einer CLK von 50MHz zu sehen.

2.1.3 Fähigkeiten

Aus dem oben gemachten Messungen ist ersichtlich, daß die Orcakarte bei hohen Frequenzen d. h. kleinen Periodendauern ziemlich nahe an die untere Grenze für die TCIH-Zeit kommt. Die Ausgangsspannungen liegen deutlich über den von NSC gemachten Grenzen von $0V - V_{cc}$, wobei V_{cc} die Spannung der Stromversorgung ist.

Bevor man die Orcakarte an den LVDS-Sender anschliesen kann, muß man also zuerst die Ausgangsspannungen der Signale an die vorgegebene anpassen.

2.1.4 Tabellen und Abbildungen

Frequenz	TCIH	TCIL	TCIP
[MHz]	[ns]	[ns]	[ns]
20	$24, 2 \pm 1, 4$	$25 \pm 1, 4$	$50 \pm 2, 8$
33	$14,6\pm1,4$	$14,9\pm1,4$	$30, 3 \pm 1, 4$
40	$11, 6 \pm 1, 4$	$10, 1 \pm 1, 4$	$25, 2 \pm 1, 4$
50	$8, 6 \pm 1, 4$	$11 \pm 1, 4$	$20, 3 \pm 1, 4$
66	$6, 5 \pm 1, 4$	$8, 3 \pm 1, 4$	$15, 2 \pm 1, 4$
75	$5, 4 \pm 1, 4$	$7, 1 \pm 1, 4$	$7, 1 \pm 1, 4$

Tabelle 2.1: Messwerte ohne Adapter

Frequenz	TxIN8	TxCLKIN
[MHz]	$\pm 0,20[V]$	$\pm 0,20[V]$
20	9,12	10,72
33	9,52	$11,\!20$
40	8,64	$11,\!92$
50	$9,\!84$	10,72
66	8,64	$12,\!00$
75	10,08	12,08

Tabellen

Tabelle 2.2: Spannung U_{pp} an den Ausgängen ohne Adapter

Abbildungen

Abbildung 2.1: Anschauliche Erklärung der Zeitmessungen

Abbildung 2.2: Schwingung über 0,8V im Bereich von TCIL (CLK=Kanal 2)

Abbildung 2.3: TCIL gegen TCIP ohne Adapter

Abbildung 2.4: TCIH gegen TCIP ohne Adapter

2.2 Anpassung an LVDS

Wie in Abschnitt 2.1 diskutiert, gibt es Abweichungen zwischen den Anforderung der LVDS-Bausteine und den Fähigkeiten der Orcakarte. Damit die Signale mehr den vorgegebenen Größen der LVDS- Bausteine entsprechen wurde zwischen Orcakarte und der Senderplatine ein Adapter eingefügt.

2.2.1 Der Adapter

Der Adapter besteht aus einer Lochplatine, auf der für Daten- und CLK- Leitung mit Hilfe von Widerständen die Signale mehr den Vorgaben angepasst wurden. Eine schematische Zeichnung mit Angabe der verwendeten Bausteine ist in Abbildung 2.5 zu finden.

Datenleitungen

Die Datensignale der Orcakarte wurden gedämpft mit Hilfe eines 560Ω Widerstandes, der in Reihe geschaltet ist. Der Widerstand wurde an die Anschlußstecker für die Senderplatine direkt angelötet. Die Aufgabe dieses Widerstandes besteht darin, die Spitzen der Datensignale zu verkleinern, damit der *Latch-Up-Effekt²* nicht auftreten kann. Die Veränderungen durch den Adapter sind in Tabelle 2.4 und Abbildung 2.6 angegeben. Die Veränderungen werden in Abschnitt 2.2.2 diskutiert.

CLK- Leitung

Für die CLK- Leitung mußte eine andere Lösung gefunden werden, damit die Anstiegzeit der Flanke unter 6ns bleibt. Die CLK- Leitung wurde mit einem 110Ω Widerstand terminiert und anschliesend mit einem 150Ω Widerstand gedämpft. Das Signal der CLK entspricht damit noch lange nicht den Anforderungen, aber dies war in der Kürze der Zeit die beste Lösung. Andere Versuche (z. B. Schottkydioden), die unternommen wurden, brachten keine besseren Lösungen. Die Signalspannungen der CLK liegen zwar noch deutlich über den Grenzen, aber es tritt noch kein Latch-Up-Effekt ein.

Die Veränderungen durch den Adapter sind in Tabelle 2.3 und Abbildungen 2.6, 2.7 und 2.8 angegeben. Die Veränderungen werden in Abschnitt 2.2.2 diskutiert.

POWERDOWN

Das $\overline{POWERDOWN}$ wird nicht von der Orcakarte bezogen, da das Signal hier nicht stabil genug ist. Das $\overline{POWERDOWN}$ wird von der Spannungsquelle direkt genommen und mit Hilfe eines auf dem Adapters angebrachten Schalters aktiviert oder deaktiviert. Mit Hilfe dieses Schalters kann auch das $\overline{POWERDOWN}$ von der Orcakarte genommen werden, dies ist abert nicht zu empfehlen, solange das Signal von der Orcakarte nicht stabilisiert wird, z. B. durch Kondensatoren.

 $^{^2 \}rm Wenn$ die Eingangssignale die Betriebsspannung bzw. Masse über- bzw. unterschreiten und dadurch ein Kurzschluss im Substrat des Bausteins entsteht.

2.2.2 Veränderungen durch den Adapter

Zeit

Die Zielsetzung des Adapters die Ausgangsspannugen mehr an die Anforderung der Bausteine zu setzen, konnte erfüllt werden mit dem Preis das die TCIH-Zeit bei kleinen Periodendauern deutlich ausserhalb der gesetzten Masche liegt und man somit den Arbeitsbereich daher schon auf max. 50MHz setzen muß. Die Verschlechterung liegt am eingebrachten Widerstand.

Spannung

Durch die Dämpfungswiderstände konnten die Signalspannungen schon besser an die Anforderungen des Bausteins gebracht werden. In Tabelle 2.4 sind die Messwerte angegeben. In Abbildung 2.6 sind die CLK- und Datensignale mit Adapter dargestellt. Man sieht die deutliche Verminderung der Amplituden gegenüber der Abbildung 2.2, die die CLK- und Datensignale ohne Adapter darstellt.

2.2.3 Tabellen und Abbildungen

Tabellen

Frequenz	TCIH	TCIL	TCIP
[MHz]	[ns]	[ns]	[ns]
20	$23, 2 \pm 1$	$24, 7 \pm 1$	$49,7 \pm 1$
33	$14,0\pm 1$	$14,5\pm1$	$31,2\pm 1$
40	$11,0\pm 1$	$13,0\pm 2$	$25,0 \pm 1$
50	$8,4 \pm 0,5$	$10,8\pm0,5$	$21, 1 \pm 0, 5$
66	$6, 0 \pm 0, 5$	$9,2 \pm 0,5$	$17,5 \pm 0,5$
75	$5, 2 \pm 0, 5$	$8, 2 \pm 0, 5$	$16, 3 \pm 0, 5$

Tabelle 2.3: Messwerte mit Adapter

Frequenz	TxIN8	TxCLKIN
[MHz]	$\pm 0,20[V]$	$\pm 0, 20[V]$
20	4,16	4,88
33	4,08	5,76
40	4,08	$5,\!52$
50	$3,\!84$	$5,\!36$
66	$3,\!84$	$5,\!12$
75	$3,\!68$	$5,\!44$

Tabelle 2.4: Spannung U_{pp} an den Ausgängen mit Adapter

Abbildungen

Abbildung 2.5: Schmetische Darstellung des Adapters

X407 und X401 sind die Anschlüsse für die Orcakarte. JP1 und JP2 sind die Anschlüsse für den Sender V.2. Die Bezeichungen sind identisch zu den Bezeichnungen in den Schaltplänen.

Abbildung 2.6: CLK- und Datensignal mit Adapter (Kanal 1 Daten, Kanal 2 CLK)

Abbildung 2.7: TCIL gegen TCIP mit Adapter

Abbildung 2.8: TCIH gegen TCIP mit Adapter

Kapitel 3

Versuchsaufbau und Messvorschrift

In diesem Kapitel wird der Aufbau, die Geräte und Materialien des Versuchs vorgestellt. Zuerst werden die verwendeten Geräte und Materialien aufgelistet.

3.1 Geräte und Materialien

Die verwendeten Geräte im Versuch:

- Messgeräte:
 - 1. Multimeter HP34401A
 - 2. 1GHz Osziloskop TDS 784
 - 3. Logic Analyzer HP1663E
 - 4. 1GHz Differenzmesskopf Tektronix P6247
- Versorgungsgeräte:
 - 1. Spannungs- und Stromversorgung HPE3631A
 - 2. Orcakarte, CLK- und Datengenerator
- Im Projekt entstandene Objekte:
 - 1. LVDS-Sender V.2, kurz Sender (s. [lvds])
 - 2. LVDS-Empfänger V.2, kurz Empfänger (s. [lvds])
 - 3. Adapter (s. 2.2)

Die verwendeten Materialien im Versuch:

• 0, 5*m*-Kabel: SPECTRASTRIP LTD. F.O.: WO303150 AWG: 28 STYLE: 20130 455-248-26 PIN: 132-2802-226 (Datenblatt nicht vorhanden)

- 2m-, 6m-, 10m-Kabel: ITT CANNON, Speedy Twisted Laminated Style No.: 20184 AWG: 28 373-7807-026 CGO 2282-26127-003 234362 (Datenblatt nicht vorhanden)
- 15*m*-Kabel: KERPEN, MegaLine 726 flex (s. [Kerpen])
- Bit-File 5_1.bit vom 14.12.1999 zur Programmierung der Orcakarte

3.2 Aufbau und Messvorschrift

3.2.1 Aufbau

Der Aufbau der im Versuch hauptsächlich verwendet wurde, ist in Abbildung 3.1 dargestellt. Mit diesem Aufbau wurden alle folgenden Messungen gemacht. Die Verschaltung für die Spannungsversorgung und für die Erzeugung der Potentialdifferenzen ist in Abbildung 3.2 dargestellt.

3.2.2 Messvorschrift

Der Differenzmesskopf wird mit dem mitgelieferten Y-Kabel an zwei angelötete Pins gesteckt. Die Pins wurden direkt an die Pins für RxIn1 des 26-poligen Steckers gelötet, d. h. die Pins sind an JP1 PIN7 für RxIN1+ und an JP1 PIN8 für RxIN1angebracht.

Der Differenzmesskopf hat für die Messungen folgende Einstellungen:

- Full Bandwidth
- Attitude $1 \div$
- DC Reject OFF

Das Oszilloskop wird für die Eye-Patternmessungen extern durch die CLK des Empfängers getriggert. Es wurde ein normaler Tastkopf dafür verwendet, der an den Ausgang RxCLKOUT angeschlossen wurde. Das Osziloskop triggert auf die steigende Flanke des Signals bei einem Spannungslevel von 1, 4V. Durch Veränderung der Hold-Off-Time im Trigger Menü wird erreicht das ein Eye-Pattern Muster auf dem Oszilloskop erscheint. Für die Messungen muß natürlich eingestellt werden das das Bild unendlich lange erscheint (*Infinity persist*). Die RxCLKOUT ist die einzige CLK, die dafür verwendet werden kann, da die CLK der Orcakarte keinen richtigen Bezug zu den Datensignalen hat und die Signale der LVDS-CLK für einen normalen Tastkopf nicht geeignet ist.

Es wird für ungefähr 10s gemessen, bevor man *Stop* beim ldrückt. Mit Hilfe der Cursor werden jetzt die Zeitabsände ausgemessen.

33 MHz werden als maximale CLK-Frequenz festgelegt, da die Signale von der Orcakarte nicht optimal für den Sender sind. Mit dieser Beschränkung sollen Unsicherheiten, die durch ungeeigneten Signale der Orcakarte erzeugt werden könnten, ausgeschaltet werden.

Es ist empfehlenswert den Sender nach Veränderung der CLK-Frequenz einmal aus und wieder anzuschalten, dies gilt besonders bei hohen CLK-Frequenzen.

3.2.3 Abbildungen

Abbildungen

Abbildung 3.1: Versuchsaufbau für die LVDS-Messungen

Abbildung 3.2: Verschaltung für die Spannungsversorgung und Potentialdifferenz

Kapitel 4

Auswertung

4.1 Jitter bei verschiedenen Kabellängen

Der Jitter wird im allgemeinen wie folgt aus den Messwerten berechnet:

$$t_{Jitter} = \frac{t_x}{t_{ui}} \tag{4.1}$$

$$\Delta t_{Jitter} = \sqrt{\left(\frac{\Delta t_x}{t_{ui}}\right)^2 + \left(\frac{\Delta t_{ui}t_x}{t_{ui}^2}\right)^2} \tag{4.2}$$

4.1.1 Bestimmung von t_{ui}

Zuerst werden einmal die t_{ui} bestimmt, dazu werden alle Messungen bei denen ein t_{ui} bestimmt wurde gemittelt und der mittleren Fehler des Mittelwerts bestimmt.

$$\bar{t}_{ui} = \sum_{i} t_{uii} \tag{4.3}$$

$$\Delta t_{ui} = \sqrt{\frac{\sum_{i} (t_{uii} - \bar{t}_{ui})^2}{n(n-1)}}$$
(4.4)

n = Anzahl der Messwerte (4.5)

Die Ergebnisse sind in Tabelle 4.1 abgebildet.

4.1.2 Ergebnisse

Der WC-Jitter (kurz: Jitter) steigt an bei steigender Kabellänge, wie es auch zu erwarten war (s. Abbildungen 4.2, 4.4 und 4.6). Es sei hier nochmals darauf hingewiesen, daß das 15m-Kabel ein für diese Zwecke besonders geeignetes Kabel ist und daher Jitter hier geringer ist. Auch das 0, 5m- Kabel unterscheidet sich zu den anderen. Der Jitter des 0, 5m- Kabels ist höher als der Jitter des 2m-Kabels. Dies könnte daran liegen, das die Kabel unterscheidlich sind. Das 0, 5m- Kabel ist aber nicht die interrisierende Länge, sondern das 10m- Kabel. Hier ist der Jitter schon bei 12MHz über der 20%- Marke, wenn man den äußeren Fall betrachtet. Der Jitter hier liegt schon bei $(20, 83 \pm 0, 84)\%$. Der Jitter beim 15*m*- Kabel liegt hingegen erst bei $(10, 67 \pm 0, 67)\%$. Die 20%- Marke wird beim 15*m*- Kabel erst bei einer Frequenz von über 20MHz überschritten. Die Wertetabellen für die Abbildungen sind 4.3, 4.5 und 4.6. Der CS-Jitter ist immer unter 20%. Die Abbildungen des CS-Jitters sind 4.1, 4.3 und 4.5. Die Tabellen sind 4.2, 4.4 und 4.6.

4.2 Jitter bei Potentialdifferenz

Zwischen Sender und Empfänger wurde künstlich eine Spannungsdifferenz zwischen den Massen aufgebaut (vgl. Abbildung3.1). Die Masse des Senders war bei den Versuchen fest und lag auf demselben Potential wie die Orcakarte. An diese Masse wurden alle Messgeräte angeschlossen. Das Potential des Empfängers konnte nun mit Hilfe des Netzgeräts erhöht oder erniedrigt werden. Damit die Messgeräte stets an derselben Stelle triggerten wurde bei Veränderung des Potentials der Masse auch die Einstellungen der Messgeräte auf entsprechender Weise geändert.

Bei den Messungen trat schon bei einer Potentialdifferenz von praktisch 0V ein Stromfluss auf von 1mA. Dieser Stromfluss wird als Untergrund angesehen.

4.2.1 Negative Potential differenz

Bei diesen Messungen war das Potential des Empfängers niedriger als das Potential des Senders. In den Tabellen 4.9 und 4.8 sind die Messungen bei dem 10*m*- Kabel. Es wurde das Verhältnis zwischen $t_{WC}(U)/t_{WC}(0V)$ gebildet, dies gibt auch direkt die Veränderung des Jitters gegenüber der Potentialdifferenz von 0V an. Die 0V sind hier nicht wörtlich zunehmen sondern ist die Spannungsdifferenz, wenn als Spannungsdifferenz 0V eingestellt waren. Die grafische Darstellung der Tabellen sind in Abbildung 4.7 und 4.8 zu finden. In Abbildung 4.11 ist Beispiel dargestellt, wie das Signal aussieht, wenn es zum Zusammenbruch kommt.

4.2.2 Positive Potential differenz

Bei diesen Meesungen war das Potential des Empfängers höher als das Potential des Senders. Die Auswertung erfolgt wie bei Abschnitt 4.2.1. In den Tabellen 4.9 und 4.8 sind die Messungen mit dem 10m- Kabel. Die grafische Darstellung der Tabellen sind in den Abbildungen 4.9 und 4.10 zu finden.

4.2.3 Potentialdifferenzmessung mit 2m- Kabel

Es wurden auch Potentialdifferenzmessungen mit dem 2m- Kabel gemacht. Bei diesen Messungen sind besondere Effekte gemessen worden. Die Abbildung 4.12 zeigt das Osilloskopbild für den mittleren Fall. Man sieht, daß die Mitte des Kreuzes deutlich über der 0V- Linie liegt. Dies kann passieren, wenn die Kabel eines Paares unterschiedlich lang sind, so daß Laufzeitunterschiede auftreten. Wenn jetzt das Potential des Empfängers gegenüber dem Potential des Senders erniedrigt wurde, so wanderte das Kreuz Richtung 0V- Linie, dies ist in Abbild 4.13. Durch dieses Wandern wird der Jitter besser, d. h. man kann durch Veränderung der Potentiale ein besseres Jitter erzeugen. Dieser Effekt trat beim 10m- Kabel nicht auf, so daß dies für die Diskussion bei Potentialdifferenzen verwendet wurde.

4.3 Tabellen und Abbildungen

Länge	$t_{ui}[ns]$	$t_{ui}[ns]$	$t_{ui}[ns]$	$t_{ui}[ns]$
[m]	CLK = 12MHz	CLK = 20MHz	CLK = 33MHz	CLK = 40MHz
0, 5	11,9	7, 13	4, 33	3,52
2	12, 0	7, 14	4,33	_
6	11, 9	7,15	4,40	—
10	12, 3	7,15	4, 32	3,55
15	11, 9	7, 18	4,36	3,56
Mittelwert	$12,000 \pm 0,077$	$7,150 \pm 0,008$	$4,348 \pm 0,015$	$3,543 \pm 0,012$

4.3.1 Tabellen

Tabelle 4.1: Messwert t_{ui}	und	Bestimmung	des	Mittelwerts
--------------------------------	-----	------------	----------------------	-------------

Länge $[m]$	$t_{csm}[ns]$	$j_{csm} = \frac{t_{csm}}{t_{ui}}$ [%]	$t_{csa}[ns]$	$j_{csa} = \frac{t_{csa}}{t_{ui}} [\%]$
0, 5	$0,260 \pm 0,030$	$2,17 \pm 0,25$	$0,24 \pm 0,02$	$2,00 \pm 0,17$
2	$0,230 \pm 0,020$	$1,92\pm0,17$	$0,30 \pm 0,02$	$2,5\pm0,17$
6	$0,260 \pm 0,040$	$2,17\pm0,33$	$0,24 \pm 0,03$	$2,00\pm0,25$
10	$0,420 \pm 0,020$	$3,5 \pm 0,17$	$0,60 \pm 0,02$	$5,00\pm0,17$
15	$0,27 \pm 0,04$	$2,25 \pm 0,33$	$0,28\pm0,06$	$2,33\pm0,5$

Tabelle 4.2: Jitter j_{cs} bei CLK = 12MHz und verschiedenen Längen

Länge $[m]$	$t_{wcm}[ns]$	$j_{wcm} = \frac{t_{wcm}}{t_{ui}} [\%]$	$t_{wca}[ns]$	$j_{wca} = \frac{t_{wca}}{t_{ui}} [\%]$
0,5	$0,70\pm0,02$	$5,83\pm0,17$	$0,78\pm0,02$	$6,5 \pm 0,17$
2	$0,51\pm0,02$	$4,25\pm0,17$	$1,3\pm0,1$	$10,83\pm0,84$
6	$1, 4 \pm 0, 10$	$11,67\pm0,84$	$1,3\pm0,10$	$10,83\pm0,84$
10	$2, 1 \pm 0, 10$	$17,5 \pm 0,84$	$2,5\pm0,10$	$20,83\pm0,84$
15	$0,89 \pm 0,04$	$7,42\pm0,34$	$1,28\pm0,08$	$10,67\pm0,67$

Tabelle 4.3: Jitter j_{wc} bei CLK = 12MHz und verschiedenen Längen

Länge $[m]$	$t_{csm}[ns]$	$j_{csm} = \frac{t_{csm}}{t_{ui}} [\%]$	$t_{csa}[ns]$	$j_{csa} = \frac{t_{csa}}{t_{ui}} [\%]$
0, 5	$0,130 \pm 0,020$	$1,82 \pm 0,28$	$0,22 \pm 0,02$	$3,08 \pm 0,28$
2	$0,130 \pm 0,010$	$1,82 \pm 0,14$	$0,26 \pm 0,01$	$3,64 \pm 0,14$
6	$0,130 \pm 0,020$	$1,82 \pm 0,28$	$0,31 \pm 0,02$	$4,34\pm0,28$
10	$0,170 \pm 0,020$	$2,28\pm0,28$	$0,70 \pm 0,02$	$9,79\pm0,28$
15	$0, 12 \pm 0, 04$	$1,68 \pm 0,56$	$0,24 \pm 0,06$	$3,36\pm0,84$

Tabelle 4.4: Jitter j_{cs} be
iCLK=20MHzund verschiedenen Längen

Länge $[m]$	$t_{wcm}[ns]$	$j_{wcm} = \frac{t_{wcm}}{t_{ui}} [\%]$	$t_{wca}[ns]$	$j_{wca} = \frac{t_{wca}}{t_{ui}} [\%]$
0,5	$0,95\pm0,02$	$13,29\pm0,28$	$0,68\pm0,02$	$9,51\pm0,28$
2	$0,58\pm0,02$	$8,11\pm0,28$	$0,72\pm0,02$	$10,07\pm0,28$
6	$1, 1 \pm 0, 10$	$15,39\pm1,40$	$1,6\pm0,10$	$22,38\pm1,40$
10	$2, 2 \pm 0, 10$	$30,77\pm1,40$	$2,6\pm0,10$	$36, 36 \pm 1, 40$
15	$0,87 \pm 0,04$	$12,17\pm0,56$	$1,16\pm0,08$	$16,22\pm1,12$

Tabelle 4.5: Jitter j_{wc} be
iCLK=20MHzund verschiedenen Längen

Länge $[m]$	$t_{csm}[ns]$	$j_{csm} = \frac{t_{csm}}{t_{ui}} [\%]$	$t_{csa}[ns]$	$j_{csa} = \frac{t_{csa}}{t_{ui}} [\%]$
0, 5	$0,100\pm0,010$	$2,30 \pm 0,23$	$0,24 \pm 0,02$	$5,52 \pm 0,46$
2	$0,140 \pm 0,010$	$3,22\pm0,23$	$0,25 \pm 0,01$	$5,75 \pm 0,23$
6	$0,100 \pm 0,010$	$2,30\pm0,23$	$0,18\pm0,01$	$4,14\pm0,23$
10	$0,100 \pm 0,010$	$2,30\pm0,23$	$0,40 \pm 0,02$	$9,20 \pm 0,46$
15	$0, 10 \pm 0, 04$	$2,30 \pm 0,92$	$0,36 \pm 0,06$	$8,28\pm1,38$

Tabelle 4.6: Jitter j_{cs} be
iCLK=33MHzund verschiedenen Längen

Länge $[m]$	$t_{wcm}[ns]$	$j_{wcm} = \frac{t_{wcm}}{t_{ui}}$ [%]	$t_{wca}[ns]$	$j_{wca} = \frac{t_{wca}}{t_{ui}} [\%]$
0,5	$0,85 \pm 0,02$	$19,55 \pm 0,47$	$0,61 \pm 0,02$	$14,03 \pm 0,46$
2	$0,80\pm0,02$	$18,40\pm0,46$	$0,82\pm0,1$	$18,86 \pm 0,24$
6	$0,77\pm0,10$	$17,71\pm0,24$	$1, 2 \pm 0, 10$	$27,60 \pm 2,30$
10	$1,14\pm0,20$	$26,22\pm0,47$	$2,0 \pm 0,10$	$46,00 \pm 2,31$
15	$0,79 \pm 0,04$	$18,17\pm0,92$	$1, 18 \pm 0, 08$	$27, 14 \pm 1, 84$

Tabelle 4.7: Jitter j_{wc} be
iCLK=33MHzund verschiedenen Längen

Spannungs-	t_{wcm}	$V_m = \frac{t_{wcm}(V)}{t_{wcm}(0.68mV)}$	t_{wca}	$V_a = \frac{t_{wca}(V)}{t_{wca}(0.68mV)}$
differenz $[mV]$	[ns]		[ns]	
0,68	$2,30 \pm 0,02$	1	$2,92\pm0,04$	1
-498, 1	$2,34 \pm 0,02$	$1,017\pm0,012$	$2,96\pm0,04$	$1,014\pm0,020$
-998, 0	$2,34 \pm 0,02$	$1,017\pm0,012$	$2,84\pm0,04$	$0,973\pm0,019$
-1498,0	$2,54 \pm 0,02$	$1,104\pm0,013$	$3,18\pm0,04$	$1,089\pm0,020$
-1597, 7	$2,53 \pm 0,02$	$1,100\pm0,013$	$3,12\pm0,04$	$1,068\pm0,020$
-1698, 0	$2,60 \pm 0,02$	$1,130\pm0,013$	$2,96\pm0,04$	$1,014\pm0,020$
-1797, 5	$2,58 \pm 0,02$	$1,122\pm0,013$	$2,96\pm0,04$	$1,014\pm0,020$
-1897, 0	$2,68 \pm 0,02$	$1,165\pm0,013$	$2,82\pm0,04$	$0,966\pm0,019$
-1996, 6	$2,70 \pm 0,02$	$1,174\pm0,013$	$2,48\pm0,04$	$0,849\pm0,018$
-2096, 2	$2,93 \pm 0,02$	$1,274\pm0,014$	$2,22\pm0,04$	$0,760\pm0,017$
-2196, 7	$3,09\pm 0,04$	$1,343\pm0,021$	$3,44\pm0,08$	$1,178 \pm 0,032$

Tabelle 4.8: Veränderung von t_{wc} bei Potential
differenz (Kabel 10m)

Spannungs-	Strom	Spannungs-	Strom
ing [V]		i'm [V]	
differenz $[mV]$	$\pm 0, 5[mA]$	differenz [mV]	$\pm 0,5[mA]$
0,68	1	4,96	1
-498, 1	1	503, 7	0
-998, 0	0	1003, 6	0
-1498,0	0	1503, 7	0
-1597, 7	0	1603, 5	1
-1698, 0	1	1703, 7	3
-1797, 5	2	1802,0	5
-1897, 0	3	1902, 3	7
-1996, 6	4	2001,8	9
-2096, 2	5	2101,0	12
-2197, 7	6	2200,8	17
		2299, 7	22

Tabelle 4.9: Strom gegen Spannungsdifferenz bei 10m Kabel

4.3.2 Abbildungen

Abbildung 4.1: CS-Jitter bei 12MHz CLK

WC-Jitter gegen Länge bei 12MHz

Abbildung 4.2: WC-Jitter bei 12MHz CLK

Abbildung 4.3: CS-Jitter bei 20MHz CLK

WC-Jitter gegen Länge bei 20MHz

Abbildung 4.4: WC-Jitter bei 20MHz CLK

Abbildung 4.5: CS-Jitter bei 33MHz CLK

WC-Jitter gegen Länge bei 33MHz

Abbildung 4.6: WC-Jitter bei 33MHz CLK

Abbildung 4.7: Änderung von t_{wc} bei neg. Potentialdifferenz (10m-Kabel)

Abbildung 4.8: Strom zwischen Sender-Empfänger bei neg. Pot.-differenz (10m-Kabel)

Abbildung 4.9: Änderung von t_{wc} bei pos. Potentialdifferenz (10m-Kabel)

Abbildung 4.10: Strom zwischen Sender-Empfänger bei pos. Pot.-differenz (10m-Kabel)

Abbildung 4.11: Zusammenbruch des Signals bei -2,1967V

In dieser Abbildung ist der äußere Fall dargestellt bei CLK = 20MHz und einer Potentialdifferenz von -2,1967V (10*m*- Kabel).

Abbildung 4.12: Mittlere Fall mit 2m- Kabel bei 0V

In dieser Abbildung ist der mittlerer Fall dargestellt bei CLK = 20MHz und einer Potentialdifferenz von 0, 4mV (2*m*- Kabel).

Abbildung 4.13: Mittlere Fall mit 2m- Kabel bei -1,9969V

In dieser Abbildung ist der mitt
tlere Fall dargestellt beiCLK=20MHz und einer Potential
differenz von -1,9969V (2m- Kabel).

Kapitel 5

Ergebnisse

Im diesem Kapitel werden die Ergebnisse der Messungen dargestellt. Aus den Ergebnissen werden Empfehlungen über die max. Datenrate bzw. Arbeitsbereich abgegeben. Die Messungen bei dem 10*m*- Kabel werden als Grundlage verwendet.

5.1 Datenraten

Die Datenrate bestimmt sich wie folgt:

1. Datenrate LVDS-Leitung: Man nimmt die CLK-Frequenz multipliziert diese mit 7, da 7 TTL-Leitungen auf einer LVDS-Leitung liegen, und hat dann als Ergebnis die Rate in Mbps.

$$D_{LVDS} = 7 \cdot CLK[MHz]Mbps \tag{5.1}$$

$$D_{LVDS} = \text{Datenrate LVDS}$$
 (5.2)

2. Datenrate TTL-Leitung: Die Frequenz der CLK in MHz ist die Datenrate in Mbps.

$$D_{TTL} = CLK[MHz]Mbps \tag{5.3}$$

$$D_{TTL}$$
 = Datenrate TTL (5.4)

Es werden alle Messpunkte berücksichtigt die bei oder unter 20%-WC-Jitter liegen. Die max. CLK-Frequenz wurde auf 33MHz gesetzt, daher gibt es eine Beschränkung auf max. $D_{LVDSmax} = 231Mbps$ und $D_{TTLmax} = 33Mbps$. Im folgenden wird immer der beste und schlechteste Fall angegeben, wobei der beste Fall nur aussagekräftig ist, wenn die Signale auf der LVDS-Leitung schnell wechseln. Es darf also keine lange 1 oder 0 vorhanden sein.

Aus den Tabellen 5.1 ist ersichtlich das eine max. Datenrate mit denen von uns verwendeten Kabeln bei 84Mbps(LVDS) liegt. Es ist aber auch ersichtlich das mit einem besseren Kabel man auch höher Datenraten erzielen kann. Die Datenrate und Signalqualtät des Signals beim 15m- Kabels liegt über der Datenrate und Signalqualtät beim 10m- Kabel.

Länge	0,5m	2m	6 <i>m</i>	10m	15m
schlechtester Fall $D_{LVDS}[Mbps]$	231	231	84	84	140
bester Fall $D_{LVDS}[Mbps]$	231	231	231	84	231

Tabelle 5.1: Datenrate gegen Länge für LVDS-Leitung

Länge	0,5m	2m	6m	10m	15m
schlechtester Fall $D_{TTL}[Mbps]$	33	33	12	12	20
bester Fall $D_{TTL}[Mbps]$	33	33	33	12	33

Tabelle 5.2: Datenrate gegen Länge für TTL-Leitungen

5.2 Umgebung

Mit Umgebung ist die Spannungsdifferenz zwischen Sender und Empfänger gemeint. Aus den Abbildungen 4.9 und 4.7 ist ersichtlich, das eine max. Spannungsdifferenz von $\pm 1,0V$ zwischen ihnen herrschen darf, wenn das Signal sich praktisch nicht ändern darf. Die Spannungsdifferenz kann auf $\pm 1,5V$ erweitert werden, wenn man ein Qualtiätsverschlechterung von 10% tolerieren kann, d. h. wenn der WC-Jitter bei $\approx 18\%$ liegt dürfte diese Verschlechterung nichts ausmachen.

Anhang A Anschluss der HandShake-Leitung

Auf der Platine von Sender bzw. Empfänger wurde ein LVDS-Empfänger bzw. LVDS-Sender installiert (s. [lvds]). Diese Bausteine sind als Handshake-Leitungen gedacht. Ihre korrekte Verschaltung wurde mit Hilfe eines Funktionsgenerators überprüft. Es wurde am LVDS-Sender ein 3,3V-TTL-Signal mit dem Funktionsgenerator erzeugt in einem Bereich von 0Hz - 15MHz. Am LVDS-Empfänger wurde mit Hilfe eines Oszilloskop überprüft, ob das korrekte Signal ankommt. Am Oszilloskop wurde die korrekte Frequenz gemessen, somit sind diese Bausteine korrekt verschaltet. Bei den Bausteinen handelt es sich um

- 1. LVDS-Empfänger: DS90LV048A Quad Receiver von NSC (s. [datenblatt2])
- 2. LVDS-Sender: DS90LV047A von NSC (s. [datenblatt3])

Anhang B

Zusammenfassung

Datenrate D_{LVDS} ist die Datenrate auf einer LVDS-Leitung. D_{TTL} ist die Datenrate auf einer TTL-Leitung. Es werden alle Messpunkte berücksichtigt die bei oder unter 20%-WC-Jitter liegen. Die max. CLK-Frequenz wurde auf 33MHz gesetzt, daher gibt es eine Beschränkung auf max. $D_{LVDSmax} = 231Mbps$ und $D_{TTLmax} = 33Mbps$. Im folgenden wird immer der beste und schlechteste Fall angegeben, wobei der beste Fall nur aussagekräftig ist, wenn die Signale auf der LVDS-Leitung schnell wechseln. Es darf also keine lange 1 oder 0 vorhanden sein.

Länge	0,5m	2m	6m	10m	15m
schlechtester Fall $D_{LVDS}[Mbps]$	231	231	84	84	140
bester Fall $D_{LVDS}[Mbps]$	231	231	231	84	231

Tabelle B.1: Datenrate gegen Länge für LVDS-Leitung

Länge	0,5m	2m	6m	10m	15m
schlechtester Fall $D_{TTL}[Mbps]$	33	33	12	12	20
bester Fall $D_{TTL}[Mbps]$	33	33	33	12	33

Tabelle B.2: Datenrate gegen Länge für TTL-Leitungen

Aus den Tabellen B.1 ist ersichtlich das eine max. Datenrate mit denen von uns verwendeten Kabeln bei 84Mbps(LVDS) liegt. Es ist aber auch ersichtlich das mit einem besseren Kabel man auch höher Datenraten erzielen kann. Die Datenrate und Signalqualtät des Signals beim 15*m*- Kabels liegt über der Datenrate und Signalqualtät beim 10*m*- Kabel.

Umgebung Mit Umgebung ist die Spannungsdifferenz zwischen Sender und Empfänger gemeint. Es darf eine max. Spannungsdifferenz von $\pm 1,0V$ zwischen ihnen herrschen darf, wenn das Signal sich praktisch nicht ändern darf. Die Spannungsdifferenz kann auf $\pm 1,5V$ erweitert werden, wenn man ein Qualtiätsverschlechterung von 10% tolerieren kann, d. h. wenn der WC-Jitter bei $\approx 18\%$ liegt dürfte diese Verschlechterung nichts ausmachen.

Tabellenverzeichnis

2.1	Messwerte ohne Adapter	6
2.2	Spannung U_{pp} an den Ausgängen ohne Adapter $\ldots \ldots \ldots \ldots$	7
2.3	Messwerte mit Adapter	13
2.4	Spannung U_{pp} an den Ausgängen mit Adapter $\ldots \ldots \ldots \ldots$	13
4.1	Messwert t_{ui} und Bestimmung des Mittelwerts	25
4.2	Jitter j_{cs} bei $CLK = 12MHz$ und verschiedenen Längen	25
4.3	Jitter j_{wc} bei $CLK = 12MHz$ und verschiedenen Längen	25
4.4	Jitter j_{cs} bei $CLK = 20MHz$ und verschiedenen Längen	26
4.5	Jitter j_{wc} bei $CLK = 20MHz$ und verschiedenen Längen	26
4.6	Jitter j_{cs} bei $CLK = 33MHz$ und verschiedenen Längen	26
4.7	Jitter j_{wc} bei $CLK = 33MHz$ und verschiedenen Längen	26
4.8	Veränderung von t_{wc} bei Potentialdifferenz (Kabel 10m)	27
4.9	Strom gegen Spannungsdifferenz bei 10m Kabel	27
5.1	Datenrate gegen Länge für LVDS-Leitung	36
5.2	Datenrate gegen Länge für TTL-Leitungen	36
B.1	Datenrate gegen Länge für LVDS-Leitung	38
B.2	Datenrate gegen Länge für TTL-Leitungen	38

Abbildungsverzeichnis

Eye-Pattern $\ldots \ldots 2$
äußerer Fall des Eye-Patterns
mittlerer Fall des Eye-Patterns
Einheitsintervall t_{ui}
Anschauliche Erklärung der Zeitmessungen
Schwingung über $0, 8V$ im Bereich von TCIL (CLK=Kanal 2) 9
TCIL gegen TCIP ohne Adapter
TCIH gegen TCIP ohne Adapter 11
Schmetische Darstellung des Adapters
CLK- und Datensignal mit Adapter (Kanal 1 Daten, Kanal 2 CLK) 15
TCIL gegen TCIP mit Adapter 16
TCIH gegen TCIP mit Adapter 17
Versuchsaufbau für die LVDS-Messungen
Verschaltung für die Spannungsversorgung und Potential differenz . 22
CS-Jitter bei 12MHz CLK
WC-Jitter bei 12MHz CLK
CS-Jitter bei 20MHz CLK
WC-Jitter bei 20MHz CLK 30
CS-Jitter bei 33MHz CLK
WC-Jitter bei 33MHz CLK 31
Änderung von t_{wc} bei neg. Potentialdifferenz (10m-Kabel) 31
Strom zwischen Sender-Empfänger bei neg. Potdifferenz (10m-Kabel) 32
Änderung von t_{wc} bei pos. Potentialdifferenz (10m-Kabel) 32
Strom zwischen Sender-Empfänger bei pos. Potdifferenz (10m-Kabel) 33
Zusammenbruch des Signals bei $-2, 1967V$
Mittlere Fall mit $2m$ -Kabel bei $0V$
Mittlere Fall mit 2 <i>m</i> - Kabel bei $-1,9969V$

Literaturverzeichnis

[AN-808]	Long Transmission Lines and Data Signal Quality, Application Note AN-808 von NSC $http://www.national.com/an/AN/AN - 808.pdf$
[LVDS-MAIN] LVDS OWNER'S MANUAL, DESIGN GUIDE von NSC http://www.national.com/appinfo/lvds/0,1798,100,00.html
[Datenblatt]	DS90CR287/DS90CR288 +3,3V Rising Edge Data Strobe LVDS 28- Bit Channel Link-75MHz, Datenblatt der hier besprochenen Bau- steine von NSC http://www.national.com/pf/DS/DS90CR288.html
[datenblatt3]	3V LVDS Quad CMOS Differential Line Driver, Datenblatt der hier besprochenen Bausteine von NSC $http://www.national.com/pf/DS/DS90LV047A.html$
[datenblatt2]	3V LVDS Quad CMOS Differential Line Receiver, Datenblatt der hier besprochenen Bausteine von NSC http://www.national.com/pf/DS/DS90LV048A.html
[Kerpen]	Datenblatt für das 15m- Kabel Megaflex 726 flex von der Firma Kerpen http://www.kerpenkabel.de/kspec/cont/Megaline/datenbl/ml726.htm
[lvds]	Entwicklung und Anwendung eines LVDS Sender-Empfänger Paa- res, dies ist der Bericht vom erste Abschnitt dieses Projektes von Marco Wilzbach und Sascha Reinhardt http://www.wilzbach.de/PCB_prototyping.html